

SIL-mAbs FOR TARGETED LC-MS QUANTIFICATION

The gold standard for robust and reliable quantitative LC-MS workflow

www.promise-proteomics.com | contact@promise-proteomics.com

SIL-MONOCLONAL ANTIBODIES

Promise Proteomics is a pioneer and an expert in the development of mass spectrometry-based quantification methods and in bioproduction of Stable Isotope Labelled monocolonal Antibodies (SIL-mAbs)

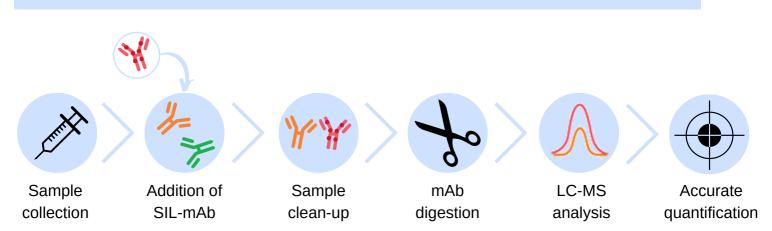
Why use our SIL-mAbs ?

A stable isotope labelled (SIL) form of an analyte protein is widely regarded as the optimal internal standard¹ for absolute quantification of proteins using LC-MS.

SIL-mAbs correct bias (due to losses, incomplete digestion, adsorption, proteolysis...) occuring during the preparation and analytical workflow. With SIL-mAbs, the accuracy and reproducibility of your quantification data is improved.

This product is useful for :

- Bioanalysis pharmacokinetics studies (clinical & nonclinical),
- Research and Discovery/preclinical/clinical drug development


Characteristics

- Full length recombinant monoclonal antibodies
- High isotopic incorporation (>98%) and purity (>95%)
- Labelling on Arg, Lys residues,

¹³C ¹⁵N isotope

• Expression systems CHO or HEK

How to use it ?

Unlike the use of SIL-peptides, Promise's SIL-mAbs are processed along with the target analytes throughout the pre-analytical and LC-MS workflow thus improving robustness and quality of the guantitative data.

1. Todoroki, K. *et al.* (2020, février). Bioanalytical methods for therapeutic monoclonal antibodies and antibody–drug conjugates : A review of recent advances and future perspectives. Journal of Pharmaceutical and Biomedical Analysis, 179, 112991. https://doi.org/10.1016/j.jpba.2019.112991

OFF-THE-SHELF PRODUCTS

SIL-mAbs* are available to support your studies and clinical trials

SIL-MONOCLONAL ANTIBODIES	REFERENCE
Abataaant	ORF90261
Abatacept Adalimumab	HUU05211
Avelumab	BAH92571
Bevacizumab	AVZ10161
Belatacept	Upon request
Cetuximab	ERX08221
Concizumab	<u>COZ13241</u>
Daratumumab	DAU05201
Dupilumab	DUU08301
Durvalumab	IMU05501
Eculizumab	<u>SOZ11141</u>
Emicizumab	<u>HEH95561</u>
Etanercept	ENF90251
Golimumab	<u>SIU05281</u>
Guselkumab	TRU05271
Infliximab	REX08151
Ipilimumab	YEH92271
Ixekizumab	TAZ13261
Nivolumab	OPH95701
Obinutuzumab	GAH92161
Pembrolizumab	<u>KEH95331</u>
Pertuzumab	PEZ10191
Risankizumab	SKZ10121
Rituximab	RIX08221
Secukinumab	<u>COH92201</u>
Tocilizumab	ACH92241
Trastuzumab	HEZ10231
Ustekinumab	STU05261
Vedolizumab	ENZ10211
VGUOIIZUTTUD	

*for Research Use Only

Is your SIL-mAb of interest not listed?

For 10 years, Promise Proteomics offers **customized bioproduction options**. Contact us for further information.

REFERENCES

Peer reviewed publications using our SIL-mAbs

University Medical Center Utrecht

Smeijsters, E. H. E. *et al.* (2023). Optimization of a quantitative Anti-Drug Antibodies against Infliximab assay with the liquid Chromatography-Tandem Mass Spectrometry : A Method Validation Study and Future Perspectives. Pharmaceutics, 15(5), 1477. https://doi.org/10.3390/pharmaceutics15051477

University Medical Center Utrecht

el Amrani, M. *et al* (2019). Quantification of neutralizing anti-drug antibodies and their neutralizing capacity using competitive displacement and tandem mass spectrometry : Infliximab as proof of principle. Journal of Translational Autoimmunity, 1, 100004. https://doi.org/10.1016/j.jtauto.2019.100004

Hospices Civils de Lyon

Millet, A. *et al.* (2019). Determination of Cetuximab in Plasma by Liquid Chromatography–High-Resolution Mass Spectrometry Orbitrap With a Stable Labeled 13C,15N-Cetuximab Internal Standard. Therapeutic Drug Monitoring, 41(4), 467-475. https://doi.org/10.1097/ftd.0000000000000613

University Hospital Grenoble-Alpes

Jourdil, J. F. *et al.* (2018). Simultaneous Quantification of Adalimumab and Infliximab in Human Plasma by Liquid Chromatography–Tandem Mass Spectrometry. Therapeutic Drug Monitoring, 40(4), 417-424. https://doi.org/10.1097/ftd.00000000000514

University Hospital Grenoble-Alpes

Jourdil, J. F. *et al.* (2016). Infliximab quantitation in human plasma by liquid chromatography-tandem mass spectrometry : towards a standardization of the methods ? Analytical and Bioanalytical Chemistry, 409(5), 1195-1205. https://doi.org/10.1007/s00216-016-0045-4

University Medical Center Utrecht

el Amrani, M. *et al.* (2016). Quantification of active infliximab in human serum with liquid chromatography– tandem mass spectrometry using a tumor necrosis factor alpha -based pre-analytical sample purification and a stable isotopic labeled infliximab bio-similar as internal standard : A target-based, sensitive and costeffective method. Journal of Chromatography A, 1454, 42-48. https://doi.org/10.1016/j.chroma.2016.05.070