2 O 2 3
Catalog

SIL-DROTEINS FOR TARGETED LC-MS QUANTIFICATION

The gold standard for robust and reliable quantitative LC-MS workflow

SIL-PROTEINS

Promise Proteomics is a pioneer and an expert in the development of mass spectrometry-based quantification methods and in bioproduction of Stable Isotope Labelled (SIL) proteins

Why use our SIL-proteins?

A stable isotope labelled (SIL) form of an analyte protein is widely regarded as the optimal internal standard¹ for absolute quantification of proteins using LC-MS.

SIL-proteins correct bias (due to losses, incomplete digestion, adsorption, proteolysis...) occuring during the preparation and analytical workflow. With SIL-proteins, the accuracy and reproducibility of your quantification data is improved.

This product is useful for:

- Bioanalysis pharmacokinetics studies (clinical & nonclinical),
- Research and Discovery/preclinical/clinical drug development
- Biomarker's quantification

Characteristics

- Full length recombinant proteins
- Identical to the protein of interest,
 same sequence as native protein
- High isotopic incorporation, stability and purity
- Uniform (U¹⁵N) or specific labelling
 on Arg, Lys residues (¹³C¹⁵N isotope)
- Unlabelled option available

How to use it?

Unlike the use of SIL-peptides, Promise's SIL-mAbs are processed along with the target analytes throughout the pre-analytical and LC-MS workflow thus improving robustness and quality of the quantitative data.

^{1.} Todoroki, K. *et al.* (2020, février). Bioanalytical methods for therapeutic monoclonal antibodies and antibody–drug conjugates: A review of recent advances and future perspectives. Journal of Pharmaceutical and Biomedical Analysis, 179, 112991. https://doi.org/10.1016/j.jpba.2019.112991

OFF-THE-SHELF PRODUCTS

SIL-proteins* are available to support your studies and clinical trials

HUMAN PROTEINS	LABELLED		UNLABELLED
	LABELLING	REFERENCES	REFERENCES
Neurodegenerative diseases biomarkers			
Apolipoprotein E3	U15N	<u>AP237306</u>	<u>AP237300</u>
Neurofilament	(Arg,Lys)13C15N	NF169531	<u>NF169530</u>
Synuclein alpha	(Arg,Lys)13C15N	<u>SY865402</u>	<u>SY865400</u>
Synuclein beta	U ¹⁵ N	<u>SY875286</u>	
Synuclein gamma	U ¹⁵ N	<u>SY925246</u>	
Tau 441	(Arg,Lys)13C15N	TA928521	<u>TA928520</u>
Tau 352	U ¹⁵ N	TA247576	
Cardiovascular diseases biomarkers			
Apolipoprotein A1	U ¹⁵ N	<u>AP176846</u>	AP176840
Carboxypeptidase B2	(Arg,Lys)13C15N	<u>CP618731</u>	
Clusterin protein	(Arg,Lys)13C15N	<u>CL118321</u>	
NT-proBNP	U ¹⁵ N	BN045556	BN045550
Troponin I	U ¹⁵ N	TN946116	
Metabolic biomarkers			
Albumin	U ¹⁵ N	<u>AL170196</u>	
Cystatin C	U ¹⁵ N	<u>CY725606</u>	<u>CY725600</u>
Vitamin D binding Protein	(Arg,Lys)13C15N	DB128581	
Cancer biomarkers			
Alpha Feto Protein	(Arg,Lys)13C15N	AF099901	
KRAS 2A	U15N	RA105856	<u>RA105850</u>
KRAS 2B			<u>RA115550</u>
KRAS 2B G12C mutant	(Arg,Lys)13C15N	RA117051	RA117050
KRAS 2B G12C/C118A mutant			<u>RA119550</u>
KRAS 2B G12C/C51S/C80L/C118S mutant			<u>RA113970</u>
KRAS 2B G12D mutant	(Arg,Lys)13C15N	RA117061	
KRAS 2B G13C mutant	(Arg,Lys)13C15N	RA117381	
KRAS 2B G13D mutant	(Arg,Lys)13C15N	RA117391	
NRAS	U ¹⁵ N	RA985806	RA985806
PD1	(Arg,Lys)13C15N	Upon request	
PDL1	(Arg,Lys)13C15N	Upon request	
Peptidic hormons			
Choriogonadotropin	(Arg,Lys)13C15N	CG115931	
Erythropoietin	(Arg,Lys) ₁₃ C ₁₅ N	EP085791	
Growth hormone 22	U ¹⁵ N	<u>GH596296</u>	<u>GH596290</u>
Sepsis biomarkers		D0075510	Destross
Procalcitonin	U ¹⁵ N or Research Use Only	PC675516	PC675620

Your protein of interest is not listed?

For 10 years, with more than 150 proteins produced, Promise Proteomics offers customized bioproduction options. Contact us for further information.

REFERENCES

Peer reviewed publications using our SIL-proteins

Genentech

Meng, M. *et al.* (2022). Assessment of KRAS G12C Target Engagement by a Covalent Inhibitor in Tumor Biopsies Using an Ultra-Sensitive Immunoaffinity 2D-LC-MS/MS Approach. Analytical Chemistry, 94(37), 12927-12933. https://doi.org/10.1021/acs.analchem.2c03146

Washington University School of Medicine

Budelier, M. M. *et al.* (2022). A map of neurofilament light chain species in brain and cerebrospinal fluid and alterations in Alzheimer's disease. Brain Communications, 4(2). https://doi.org/10.1093/braincomms/fcac045

AstraZeneca

Kantae, V. *et al.* (2022). Accelerating the Validation of Endogenous On-Target Engagement and In-cellulo Kinetic Assessment for Covalent Inhibitors of KRASG12C in Early Drug Discovery. bioRxiv. https://doi.org/10.1101/2022.02.17.480880

Janssen

Bijttebier, S. *et al.* (2021). Development of immunoprecipitation – two-dimensional liquid chromatography – mass spectrometry methodology as biomarker read-out to quantify phosphorylated tau in cerebrospinal fluid from Alzheimer disease patients. https://doi.org/10.1016/j.chroma.2021.462299

National Institute of Standards and Technology

Schneck, N. A., *et al.* (2018). Quantification of cardiac troponin I in human plasma by immunoaffinity enrichment and targeted mass spectrometry. Analytical and Bioanalytical Chemistry, 410(11), 2805-2813. https://doi.org/10.1007/s00216-018-0960-7

Wellspring Biosciences

Hansen, R. *et al.* (2018). An Internally Controlled Quantitative Target Occupancy Assay for Covalent Inhibitors. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-32683-w

Wellspring Biosciences

Janes, M. R. *et al.* (2018). Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell, 172(3), 578–589.e17. https://doi.org/10.1016/j.cell.2018.01.006

University Hospital Grenoble-Alpes

Maes, P. *et al.* (2017). Introducing plasma/serum glycodepletion for the targeted proteomics analysis of cytolysis biomarkers. Talanta, 170, 473-480. https://doi.org/10.1016/j.talanta.2017.04.042

University Hospital Grenoble-Alpes

Gilquin, B. *et al.* (2017). Multiplex and accurate quantification of acute kidney injury biomarker candidates in urine using Protein Standard Absolute Quantification (PSAQ) and targeted proteomics. Talanta, 164, 77-84. https://doi.org/10.1016/j.talanta.2016.11.023

Merck

McAvoy, T. *et al.* (2014). Quantification of Tau in Cerebrospinal Fluid by Immunoaffinity Enrichment and Tandem Mass Spectrometry. Clinical Chemistry, 60(4), 683-689. https://doi.org/10.1373/clinchem.2013.216515

INSERM

Lebert, D. *et al.* (2011). Production and Use of Stable Isotope-Labeled Proteins for Absolute Quantitative Proteomics. Methods in Molecular Biology, 93-115. https://doi.org/10.1007/978-1-61779-148-2 7